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It is so difficult to fnd the beginning. Or, better, it is difficult to begin at the
beginning. And not try to go further back. - Ludwig Wittgenastein, On Cer.
tainty, 1471.

1. Introduction

This paper focuses on software techniques to support Smalltalkl
on conventional architectures. It reports on our experiences implementing Smalltalk

On A Reduced Instruction Set Computer (SOAR). Although SOAR has some
hardware support for running Smalltalk, our experience has led us to the conclusion
that efficient execution of Smalltalk requires less hardware support than we initially
supposed. This survey of our implementation should provide a roadmap for those
wanting to implement Smalltalk on conventional architectures.

In the discussion that follows, we assume the reader is somewhat familiar with
both ST-80 as defined in JGoldberg83J, and with Reduced Instruction Set Computers
as discussed in [Patterson85].

The designers of the Smalltalk programing language adopted the purist position
that everything in the system would be an object. This was not limited to the usual
basic data types, but extended even to the state of the machine: activation records,
instructions, program counters all conformed to a specified format. For example,
since the design did not countenance pointers into the middle of subroutines, the
return address for every subroutine call and even the program counter had to be an
integer offset, not an absolute address [Goldberg83]. Even the most frequently
accessed of all data - instructions - were constrained by this design. The language
was defined in [Goldberg83] in terms of an interpreter for a virtual machine with a
set of instructions they called "bytecodes". This made Smalltalk portable since it is
relatively easy to understand the virtual machine and to write an interpreter for it.
Smalltalk was developed on research machines (the latest of which is the Dorado) that
had writable control stores and could do the interpretation in firmware [Deutsch83]
(Lampson8l] [Thacker70]. So with the Dorado's 70ns micro-cycle time, they were
able both to define a portable virtual machine for Smalltalk, and still achieve very
acceptable performance interpreting the bytecodes.I

There are several reasons why Smalltalk programs have proven especially
difficult to execute quickly.

* The language has been defined in terms of a bytecode interpreter. Interpreters
are slow.

" * The object oriented nature of the language implies a huge number of time con-
suming procedure calls, or "messages".

* The definition of Smaltalk execution requires the rapid creation and automatic
reclamation of many objects. This puts a heavy demand on the memory
management mechanism.

'Smulltalk-IS i a trademrk o( the Xeroz Corporation. Whenever we icre rferring to Sma/italk as defined by
Xerox in Iooldberstul, we will use Smflltalk-O', or its abbreviation STSO. Whenever we refer to the lanowale
&part from any implementation, we will refer to it s imply SmltaLk'.

In saw circles, this i sot called interpretation, but execution of native machine code.
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Most of the early implementations of Smalltalk on 'traditional' von Neumann-
type architectures have been evaluated as slow to abysmal [Krasuerg3. Efforts to
speed up interpreter execution have included predeclaration of object types [Suzuki84
and 'caching' Smaltalk procedures in native machine code while preserving the
bytecode orientation of the definition [Deutsch84]. The SOAR project differs from
the [Suzuki841 effort in that we do not require pre-declaration of types for efficient
execution. We differ from [Deutschg4] in that we do not try to maintain the illusion
of a virtual machine executing bytecodes. Abandoning this model of execution has
forced our implementation to differ in several important ways:
* Our compiled methods are different: ST-S0's contain bytecodes, ours contain

integers (which are also SOAR machine instructions).
0 Our method contexts (ST-80's activation records) are different: ours are fixed

size, reside on the machine stack, and are moved into heap space only when
necessary.

0 0W block 1o wdle W48 b d d ilaiw h ,tweea a block
and its activaion record: we keep. tem epurate.

* The 6ecome operation is being phased out and will eventually ceased to be sup-
ported.

These are discussed in more detail in the following pages. But these differences allow
us to achieve acceptable performance executing Smalltalk.

The SOAR project started with the basic RISC assumption that memory would
be plentiful and should be traded in exchange for speed. There were two questions:
how can Smalltalk be executed quickly on more traditional architectures? and, what
changes/enhancements to the traditional architectural model can produce a fast exe-
cution vehicle! The SOAR project concentrated on both questions with approxi-
mately equal emphasis, and our solution took the form of a judicious split of func-
tionality between innovative hardware and software support. This paper will pri-
marily discuss the project's answers to the first question. Answers to the second ques-
tion can be found in detail in (PendletonfO) [Ungarg4b) [Ungar86J and [Samples85J.

Currently, we are still executing on a simulator running on Sun workstations. We
have completely booted the system, it paints the windows, and we have run the
macrobenchmarks. We are waiting for completely functional chips to plug into the
board to run on Sun workstations. The migration path from the Xerox image to
SOAR is outlined in Fig. 1. It is worth noting that we needed to use an existing
Smalltalk system to modify the image. BS (Berkeley Smalltalk), an implementation
running on Sun workstations that interprets bytecodes, provided that system.

The SOAR system is projected to run ten times faster than BS, about five times
faster than the system described in (Deutsch84]: or about the speed of the implemen-
tation on the Dorado.

We will describe our software solutions in a bottom-up (inside-out) order. Thus,
we start with general object management, including addressing and reclamation, and
proceed to compiled subroutines, activation records (contexts), and processes. Table
2 summarizes the contents our presentation by listing problems we have considered
and a brief outline of our solutions. The bytecode--SOAR compiler is outside the
scope of this paper, see fBush8S) for more details.

,' . ..-..-..--... -. .*.,-. ., ,*...
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Smailtalk-80 image converter Berkeley Smalltalk SOAR compiler
image (rot) (be) (aewb2s)

(Xerox) (dmu) (dmu) (ads, pub). O-WD-WDW
SOAR runtime system SOAR assembler SOAR simulator simulation results

(sys) (gas) (Daedalus)
(ads, dmu, pub) (ads, dmu, pub) (ads, dmu)

Figure 1: Steps involved in a SOAR simulation. First, rot removes the object table
from the Xerox ST-80 image. We then use BS to make any modifications necessary
in the image (e.g. to eliminate some becomes). BS (Berkeley Smalltalk) is a 68000
version of ST-80 which maintains the bytecode virtual machine as its lowest level: it
was not a system noted for speed. Newb2s produces a Smalltalk image for SOAR
by converting the BS objects to SOAR format and running Hilfinger's Slapdash
compiler, which translates the bytecoded programs to SOAR instructions. We have
also coded the Smalltalk primitive operations and storage management software in
SOAR assembly language. After this is assembled, it is fed to our SOAR simulator
along with the Smalltalk image. The initials below each system indicate its author:
ads is Dai Samples, pub is Paul Hilfinger, and dmu is David Ungar.

-.-- ~ -N-
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Table 2: Summary of problems and solutions

" object addressing: direct pointers, removing Object Table

" become sans Object Table: Rewrite system classes to use explicit indirection.
Rejuvenation for new-old, copy for -- length objs.

. hashing cane Object Table: extend header
. accessing well-known objects: Registry of needed objects; system rou-

tines for searching Smalltalk dictionaries.

" storage reclamation: Generation Scavenging: stop and copy young survivors

a memory fragmentation: Scavenging compacts young objects. Offline reor-
-mmint..ddd oecta. Paging of old objects.

0 efficient creation/deletion for activation records: use stack of activation
records for normal cases

* pointers to activation records: Detect non-lifo activation records by check-
ing stores and return values. Maintain table of pointers to activation records in
stack. On return from non-lifo context, copy it to heap, update pointers by
searching table, and remove entry from table. Put object headers in gaps
between activation records so activation record on stack looks like object.

" block context objects: Separate block prototype from its activation record.
Block prototype is a real object, activation record is just activation record.
Create proto upon blockCopy (but need not), create activation record upon en-
try.

" . non-local returns: Rescue non-lifo contexts in a subroutine.

" allocating activation record stack: Resume primitive checks for blockCon-
text.

. a freeing activation record stack: Suspend primitive checks for call from ter-
a" minate - rescues non-lifos and reclaims stack.

* fast method lookup: In-line cache

. In-line cache Invalidation: Zapping old methods.

. converting context objects In Image: Throw them away - use genesis
method.

0 updating pen into methods If method is scavenged: methods must be old

* debugger: designed and coded, not yet put into use

* compiler: see [Bush]

2. Direct Addressing - Eliminating the Object Table

ST-80 addresses objects by an integer index into an object table, instead of
through a direct word or byte address. Few real machines have the ability to
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perform such segment-oriented addressing on 100,000 segments averaging 14 words in
length. Those that can - such as the iAPX-432 - pay a large price in speed or cost or
both. In Smalltalk, the cost of indirection is justified by the need for cheap memory
compaction: when objects are moved, only the object table need be updated. How-
ever, we did not want to penalize every object access just to ease compaction, so we
eliminated the object table by designing a reclamation algorithm that also compacts.
BS and SOAR are the only Smalltalk systems without object tables (Figs 3 and 4).

The indirection through such a table is an indirect cost of other storage manage-
ment strategies that is sometimes overlooked. It can be a bottleneck: a typical ST-80
system accesses the object table 1.2 times per bytecode [Ungar83]. Assuming SOAR
performs as fast as the Dorado (BOOK bytecode/sec), SOAR would access the object

Indirect

Object Table

ect I O1b Object 2
re decounat address

table index count address table indextr
table index count address table index

-table index cilett address -table index

table index c A'e t address -- table index

count address

Figure S: Indirect addreeing. In traditional ST-80 systems, each pointer is really a
table index. The table entry contains the target's reference count and memory ad-
dress. This indirection required previous ST-80 systems to dedicate base registers to
frequently accessed objects. The overhead to update these registers slowed each
procedure call and return.

Direct

Object I Object 2

address address
address address
address address
address address

Figure 4: Direct addreseing. A SOAR pointer contain the virtual address of the
target object. This is the fastest way to follow pointers.

C .. 9.s ~t'.A.!t * . * ' ~..,-
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table 380,000 times per second. The absolute minimum table access would be a single
load instruction, which takes two cycles. Assuming 400 ns per cycle, such an indirec-
tion would take 800 us and, at 360,000 table accesses per second, that would be 0.29
seconds of indirection time for each second of processing time. Discussions with
Deutsch suggest that further optimization possibly could halve this overhead. In
other words, an object table would slow SOAR by 15% to 29%.

We have also estimated the impact of indirection on code size [Ungar88J. An
Object Table would require an extra instruction to load or store a literal variable,
and one indirection in the method prologue (for the receiver). We assume that many
indirections will be optimized away, as in Deutsch and Schiffman's system, and that
the Object Table can ieference as many objects as can a direct-pointer system. Table
5 presents our analysis under these assumptions (i.e. 32-bit words). The extra code
for an object table would add 2% to the size of the system.

Becomes. Although we eliminated the object table to improve performance,
there is one ST-80 primitive operation that runs much slower without it. The
become: primitive exchanges the identities of two objects, so that all pointers to the
first object are redirected to the second, and vice versa.

A ST-80 system with an object table can perform a become quickly by exchang-
ing object table entries (Figure 8). A system without an object table (such as SOAR)
must search objects and exchange pointers. Although we have devised strategies to
limit the search, a worst case become still involves a search throughout virtual
memory. Such a long pause is unacceptable. We avoided this problem by rewriting
the software for ST-80 data structures to avoid becomes. To establish the feasibility
of this approach, we added new Collection classes that mimic old ones without resort-
ing to becomes (Figure 7), then modified the macro-benchmarks to take advantage of
our become-less classes [Wallace83]. Table 8 presents an analysis of this change on
system performance. The printDefinition benchmark shows that this change has a

* negligible effect on a benchmark that does not do any becomes. But, our efforts to
eliminate becomes from programs that did use them were handsomely repaid with an
18% to 28% performance improvement.

Although we have eliminated becomes invoked by the system classes, the SOAR
programmer must either shy away from this primitive, or be prepared to pay a stiff
performance penalty [Ungar86]. However, we believe that the become primitive is so
intrinsically expensive - requiring either a scan of virtual memory or a level of
indirection that slows down many frequent operations - that alternatives should be
sought. Eventually, all instances of becomes will be removed from the system, and
the primitive no longer supported. The SWAMP project has reached the same

Table 6: Static cost of object indirection.

method prologues 4654
literal variable loads 3532
literal variable stores 254
total image size 1,500 kB

relative cost of additional code 2.25%



original create copy of self self become: copy
set

\L/ \/ \1/
bjec tabl sobj table bj atab obj table bj tabl

tally -tally tally tiny tally
2 2 2 2 2
3 3 3 3 3

7 7

Figure 6: Growing with become. The sequence above illustrates how a set employs
become to grow in a ST-80 system. Initially, the set is (2, 3, 5) and we attempt to

.add 7 to it. The set creates a larger copy of itself and uses become: to replace the
original set with the larger version.

original reate new array part witch internal pointe
set

[ally tally

wA

7 7

Figure 7. Growing without become. The sequence above illustrates how our
modified sets grow without resorting to become:. The contents are stored in a
separate array. To grow, the eel allocates a larger array, initializes it, and
redirects an internal point to the new array. We have replaced costly implicit in-
direction with explicit indirection that incurs coat only when needed. This is in
keeping with the RISC philosophy.

% e
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Table 8: Performance Impact of eliminating become.
benchmark # becomes duration duration cycles

w/ becomes w/o becomes saved
,_ _ _(cycles) (cycles)

printDefinition 0 75,475 75,317 0%
compiler 7 1,383,201 1,127,658 18%
decompiler 38 4,045,641 3,008,974 26%
printHierarchy 3 185,997 119,574 28%

conclusion (Lewis88I.

Although we have eliminated the object table, there remain a few objects, such
as nil, true, false, Point, String etc that the runtime support routines need to be able
to find. This is almost the same set of objects with permanently assigned object table
indices in JGoldberg83l. Our solution to this problem is to create a new "system
object" that contains a table of pointers to well-knowmajects, s we!m -4 neces-
sary system data. Then the system object and the objects for nil, ,true, %ad false are
locked down by assigning them to fixed locations in memory.

Hashing. Perhaps the subtlest problem with eliminating the object table arises
from the hashing semantics expected of Smalitalk objects [Kaehler]. Smalltalk
requires that each object be capable of returning a hash value which is used to main-
tain ubiquitous hash tables (Dictionaries). The operation producing this hash value
must therefore be effcient. Since we assume that time is critical and space is plenti-
ful, we chose to add a field to the header of each object, containing an integer
assigned by the instantiation primitive (new and new:). The bash primitive simply
returns this field.

t. Generation Scavenging

Early in the SOAR project, we realized that automatic storage allocation and
reclamation could easily become a bottleneck. We knew that the overhead for alloca-
tion and freeing in ST-80 systems ranged from 10% to 20% [Deutsch84] fUngar83j,
that some reclamation algorithms introduced annoying pauses, that some required the
programmer to explicitly free circular structures of objects, and that most of the
algorithms had been implemented in microcode. Since we wanted to attain good per-
formance without microcode, we designed, implemented, and measured Generation
Scavenging, a new garbage collector that
0 limits pause times to a fraction of a second,

* requires no hardware support,

* meshes well with virtual memory,

• reclaims circular structures, and
• uses only 3% of the CPU time in SOAR. This is less than a third of the time of

deferred reference counting, the next best algorithm.4

Our system needs to know the location d eighteen objects in heap space.

Experenee with SOAR has made us realize that soue of the other algorithim that are Usually microcoded
need not be.



The details of Generation Scavenging have been reported elsewhere [Ungar84a]
and [Ungar86]. Briefly and simply, memory is divided into two regions: one to con-
tain old objects, the other containing new objects. All objects are allocated out of
new space, and when this space is depleted, the live new objects are traversed and
copied (see Fig. 9). Since most objects die young, there are relatively few objects that
survive: on the average, only 3% to 5% of new objects survive and have to be moved
[Ungar84a]. The algorithm actually used is more sophisticated than that just
described, but nevertheless executes with less overhead that mark-and-sweep or refer-
ence counting algorithms (3% vs 9-20%).

The important point about Generation Scavenging in this context is that it
places very little burden on program execution. For example, store instructions that
put pointers to new objects into old objects must update a table. This cross-
generation check can be accomplished with few instructions and no extra data refer-
ences either in software by checking the two values against the new/old dividing line,
o in haidwre with a few tag bits is the address field, as in SOAR. It turns out that-
doing the check in software is so simple and infrequent that it was a mistake to have
put the check into SOAR's store instruction. It can be done in software with a 1%
performance penalty [Ungar86]. Furthermore, storing a young pointer into an old
object is so rare (only 4% of all stores) that recording it adds only 0.05% overhead
[Ungar88]. Implementing only a small number of generations which allows a cheap
software check contrasts with, for example, ZetaLisp's strategy in which extra
hardware in the page map is needed to keep track of many small generations and to

d~Do
0~ 0

objects created here 1 3o -
c o new objects

physical memory

scavenge objects to here 0 ).

survivors of previous scavenge 0

promote to here 0 old objects

0 paged virtual memory

Figure 0: Bird'. eye view of Generation Scavenging. After an object has survived
enough scavenges, it is promoted to the old object area. New objects are locked
down in physical memory; old objects reside in virtual memory and may be paged
out.

. ...........
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check stores Moon85].

4. Activation record management

Everything in Smalltalk is an object, and that includes activation records. If
Smalltalk were implemented straightforwardly from the description in [Goldberg83]
(and most of the systems described in [Krasnerg3 were initially so implemented) then
each procedure call (message send) would require the allocation and initialization of
an activation record from the heap. Each return would leave a dead activation
record for garbage collection to reclaim. Given the high percentage of procedure calls
in Smalltalk programs (83% of all objects allocated in ST-80 are activation records,
and 28% of all bytecodes executed result in calls of one flavor or another (Falconeg3J)
activation record allocation and freeing can be a very large proportion of the running
time. So some sort of blending of Smalltalk's model of activation records (context
objects) and an efficient stack implementation is needed for smooth execution [War-
iug. This union seems particularly invitiag i view of the fact Lal, in spite of the_
"Tull object", t-tizes p Snalttk seemd to utiutim reer, 65% of them behave
like traditional activation records during their lifetime: they are created by a call,
never used as data objects, and are released as soon as the executing procedure
(method) exits [Deutsch84J.

This problem has been attacked in other Smalltalk systems on conventional
machines. [Suzuki84] keeps a small memory area in which to keep the machine stack.
Wnen the stack becomes full, activation records are swapped out to heap space in
first-in-first-out order (much like managing register windows on a RISC chip). If any
context in the stack needs to be retained then all contexts are swapped to heap space.
[Deutsch841 creates a context object either in heap space, or on the machine stack,
depending on how and when the object is created. If a pointer is generated to a con-
text on the machine stack, then it is marked specially to be popped into heap space
instead of oblivion. The Tektronix system .can't find our ref.] caches the current
context in a convenient format, and eliminates the allocation and initialization for
leaf activation records.

Our approach varies in two ways: we have a more selective algorithm for detect-
ing those activation records that need to be moved to the heap, and we don't try very
hard to mask the differences between ST-80 contexts and our activation records.
Objects in heap space can point to contexts still on the stack. Figure 10 illustrates
how registers are stored in the stack with 'gaps' between the activation records: the
gaps contain the context object headers. The main difference between our implemen-
tation and ST-80 is that we support only one size of activation record: the SOAR
stack frame is sixteen words. Once this change is promulgated throughout the sys-
tem, it doesn't make any difference to objects manipulating activation records
whether the AR's are on the stack or in heap space.

But now we have the problem of knowing when an activation record on the top
of the machine stack can be discarded or must be moved into heap space. For exam-
ple, a subroutine can obtain a pointer to its own activation record and place it in a
global variable. After the subroutine returns, another routine can inspect the activa-
tion record via the global variable. In this case, it is necessary to have moved the
activation from the machine stack into heap space. (See Fig. 11.) Extraordinary
measures are required to preserve the correct objects. Our strategy is like that for

' ',-<.,: s s ,- , - ".. , :',". . . X%".. .x.;.-. ..;;; . . - -': ..'.',' '.'. .:;<.; ;,'. .
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Hfigh memory

ARI

header

AR2

header

AR3
header

stack pointer

header

header

... .. . ... ..... .

header

Low memory

Figure 10: SOAR Activation records. SOAR activation records showing the gap$
in memory in which the object headers for the context objects awe placed. The di-
agram shows three active contexts in the stack.

A:
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Machine sMachine
stack Heap space stAck Heap space

PP

t~mm w he be Whn 1P reTurns, S activation
Semed nmst be moved to Heap space

becaue d td pointer.

Figure 11 Saving activation record.

generation scavenging: we monitor stores and returns. When a pointer to an activa-
tion record is either stored into an object or returned up the call stack the referenced
activation record is marked as non-lifo: i.e., the activation record is likely to outlive
its existence on the LIFO machine stack. When a non-Iifo activation record is about
to be destroyed (i.e. when a return instruction would pop it off the stack) it must be
moved from the stack to the heap. Thus, the steps are:

(1) Check for stores of pointers to activation records and for activation records
as return values. Mark any such activation records as non-lifo.

(2) On returns, check to see if the current activation record has been marked. If
so, the return must move the activation record and adjust pointers to it.

Blocks. Activation record management becomes much more complicated when
Smalltalk blocks (aka funarp, closures) are implemented. ST-80 blocks implement
control structures by allowing one routine to control execution in another's context.
Frequently, a block is created, passed down the call chain to a subroutine that repeat-
edly invokes the block and then returns. Thus, we must impose a minimum of over-
head on block implementation, while handling the non-lifo references. Thus, we do
not mark an activation record as non-lifo if the only references to it are from blocks.
Instead, the store and return checks treat the block as a surrogate for its home
activation record. If a pointer to a block is stored, its home gets marked as non-lifo.
In other words, although a block is an object that refers to a context, we do not mark
the context as non-lifo until the block itself becomes non-lifo.

We differ from [Deutsch84] in that, apparently, they create activation records
for Smaltalk blocks automatically in heap space, while we treat them as stack allo-
cated activation records. Without going into excruciating detail, we would criticize
the design of Smalltalk on this point: the Smalltalk notion of a block object folds the
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notion of an activation record for that block into the block object itself. That is,
while Smalltalk separates the notion of a procedure and its associated activation
record(s), the separation between blocks and their activation records is muddled. In
our implementation, we separate these inappropriately confused notions, and keep
activation records for blocks on the machine stack along with activation records for
procedures. The blocks are objects in their own right. (Peter Deutsch put this bee in
our bonnet.)

Any time a new activation record is allocated on the stack, all entries in that
record must be initialized to nil to avoid dangling references (see Fig. 12). This can be
an unacceptable overhead if one is using fixed length records that may not be com-
pletely utilized by all activations.-

MACHINE STACK

B D

I II III IV

C C

HEAP SPACE

Figure If: Machine agack, and ecavenging. (I) Procedure A calls procedure B.
Procedure B creates a pointer to object C in its activation record and (If) returns.
At this point a garbage collection takes place and (I1) reclaims the memory occu-
pied by the now useless object C. (IV) Procedure A now calls procedure D, which
does not reinitialize the register containing that old pointer to C. If another gar-
bage collection were to occur at (IV), the activation record for D would contain a
pointer to an object that no longer exists. If no garbage collection were done
between (I1) and (IV), then C would be retained by a garbage collection at (IV).
The method described in the text using a highwater mark would have milled the
pointer to C during the garbage collection at (11).

.4



We implemented a technique whereby we avoid this situation without having to
completely initialize each and every register and word of an activation record on pro.
cedure entry. As procedures are invoked, a record is kept of the deepest point
reached on the stack; on SOAR, keeping track of this highwatcr mark is easily done
as part of the window handler. When generation scavenging occurs, the active por-
tion of the stack is scanned and all portions of the stack between the current activa-
tion record and the highwater mark are nilled. Note that while objects may be need-
lessly scavenged, (again, see Fig. 12) they are guaranteed to exist. By initializing only
those portions of the activation record that are used, and keeping track of the high-
water mark between generation scavenges, we eliminate any possibility of dangling
references, and obviate the need to initialize entire activation records.

One problem with our modification of the format and handling of activation
records is that the ST-S0 debugger that comes with the image from Xerox PARC can
no longer be used. Debugging is only slightly more complicated for SOAR code than
with bytecodes. It certainly is so worse than any other machine code debugger, and,
because it will be embedded in a Smalltalk system, it will certainly be a 'symbolic'
debugger: the user should never see SOAR machine code (unless, of course, she wants
to). While decompiling SOAR code to Smalltalk may be difficult, keeping the source
code memory resident removes the difficulty. Because Smalltalk procedures are small,
and compilation is fast, an error location in a sequence of SOAR instructions can be
quickly mapped onto the appropriate location in the Smalltalk routine by simply
recompiling the routine where the offense occurred. (The Turbo-Pascal system makes
very effective use of this technique [Borland88j.) We have a debugger implemented for
Smalltalk on SOAR, although it has not yet been incorporated into our system and
itself debugged. There are still open questions in this area, and work on the debugger
remains in progress.

S. Process Management
In ST-80, processes are simply objects that point to the current activation

record, which in turn points to the preceding activation, etc. When the process

object is no longer referenced, it is reclaimed, and all activation records for that pro-
cess are also reclaimed if not referenced elsewhere. In SOAR, activation records ae
not moved into heap space except under certain conditions. Special measures must be
taken to initialize processes and activation records, and to reclaim the memery they
use when they ae no longer active.

On SOAR, each process is allocated a fixed size chunk of memory for its
(machine) stack (its activation record stack). When there are more activations in a
process than can fit in this memory, a new chunk is allocated and the activation
record stacks are linked. Managing activation record stacks works well on SOAR
because of mechanisms that exist for RISC register windows [Katevenis83). Whenever
a call (or message send) would deplete the number of register windows available on
the chip, a branch is taken to a window handler. The handler spills the oldest window
on the chip into the activation record stack, and also checks for activation record
stack overflow. If the activation record stack is also about to overflow, then the
remaining register windows still on chip are spilled into the current activation record
stack, a new activation record stack is allocated and initialized, and execution begins
in the new activation record stack. When a return instruction is interrupted by a
window underfiow (i.e. the appropriate activation record is not on chip), a check is

ex
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made for activation record stack underfiow, and the inverse operation is performed.
Images. Changing instruction sets presents another problem related to

processes. Smalitalk images are saved states of execution. There is no such thing as
a bootstrap of Smalltalk because all images are frozen snapshots of executing systems,
including any active processes. Sometime in the early 1980's one version of Smalltalk
was booted and initialized, and all versions since have been snapshots of that original
boot. We refer to this as being saved, but not born again.

Because we were throwing away bytecodes, linearizing activation records on a
machine stack, and changing the garbage collection method (among other things), we
determined that converting a running image was much more work than simply boot-
ing a re-compiled system. We then had to determine how to boot and initialize the
system. When we asked Peter Deutsch about this possibility, he responded that it had
been so long since anyone at Xerox had tried, he didn't know if the initialization code
worked any longer. Fortunately for us, the code in the Smalltalk system for booting
was Corect. We wio-e an pwxre flt would call and initialie all of the.
qIpreipriae vbect d be&it spliming off the necessary background processes. The
procedue coumised of less than a dozen lines of Smalltalk, and we called it "genesis".

Dead processes. There was another consequence of our decision to "stackify"
the Smalltalk activation records: we could no longer depend on automatic storage
management to reclaim dead processes. The problem occurs principally because the
Xerox Smalltalk implementation simply suspends processes and depends on reference
counting to reclaim the storage; hence, it does not provide a "terminate process"
primitive. While generation scavenging reclaims the process objects themselves, the
activation record stacks are not Smalltalk objects in heap space and must be treated
differently. But the lack of a 'process terminate' means it is difficult to tell when
activation record stacks can be reclaimed. We have solved this problem by having
our version of the "suspend process" primitive check all process suspensions in the
context of the call to determine if it really is a suspension or an effective process ter-
minate: the process stack can then be reclaimed immediately.

S. Results

Anyone interested in implementing Smalltalk efficiently needs not only to under-
stand, the dynamics of Smalltalk as defined in [Goldberg83] and measured in [Kras-
ner84J, but also the potential consequences of modifying that definition. In Table 13
we present figures from our simulations of our system running the standard macro-
benchmarks s used in [Krasner4 to judge the execution efficiency of Smalltalk imple-
mentations.

One conclusion is apparent: the system primitives are important. For every
second spent in compiled code, three seconds are spent in the runtime system. This is
best explained by the fact that, even for a compiled system, much of the action still
occurs in those routines that define the execution of the primitives on which the
Smalltalk bytecodes depend.

Table 13. [from Unlar8S, App. A & DJ"
Benchmark time in time in total time in

runtime library cache check runtime system
classOrganizer 69% 14% 73%
compilerBenchmark 66% 10% 76%
decompiler 68% 10% 78%
printDefinition 62% 11% 73%
printHierarchy 76% 7% 83%

,average 68% 109 76%
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[Ungar88] concludes that of all the features designed into the system, the
software features turned out to be more important than the hardware features in
their effect on the final performance figures. The speedups attributable to specific
features of the hardware and software are summarized in Table 14. This table indi-
cates how much longer a task would take if the indicated feature were removed from
our system. For example, we use the in-line cache presented in [Deutsch84]. If we
removed the in-line cache, our system would run 26% slower. If all the features indi-
cated were removed, a task that currently takes 100 seconds would then take 263
seconds.

Table 14. Software vs. Hardware improvements [from UngarM].
Software 158%

compilation (estimated) 100%
in-line cache 26%
direct + GS 32%

Hardware
register windows 46%
tagged integers 33%
non-delayed jumps 11%
single cycle nilling of activation record 4%
software interrupt 7%
trap instructions 4%

The SOAR project took the well-worn phrase "hardware prices are falling" at
face value and assumed that users would rather spend money on memory chips than
on complicated mechanisms. But what exactly is the cost? Compiling Smalltalk into
SOAR increases the size of the Smalltalk image about 0.5 Mb. Peter Deutsch

4-. estimated that compiling all of the Smalltalk image into 68000 code would increase its
size by one megabyte (Deutsch84]. Given that the original Smalltalk image is over 1.5
Mb, it appears that compiling to SOAR is a reasonable tradeoff.

Table 15 contains information on the amount of code that had to be written to
implement Smalltalk on SOAR. The C code running on the Sun includes the inter-
face routines with the SOAR board, interface routines with the Sun's graphics display
devices, floating point, and file system interface routines. It does not include the code
for Bill Bush's Smalltalk-SOAR compiler written in Smalltalk, nor for the code in
"genesis".

14

'To be contrasted with the nicrobenchnmaks which check the eflkiency of the more primatt-e facilities of the
ystem (e.g. plus, arym reference, string concatensAion, etc).

e For Smalltalk afcionados, note that BitDIt i on the Sun side, but Char c erScanner is on the SOAR side.

I/

4. /
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Table 16: Breakdown of code for SOAR runtime system.
files lines words chars function
19 3385 12491 90094 misc files
16 3847 11799 95817 prim files
2 1126 4845 34141 trap handler files
3 364 1604 11083 process files

40 8702 30739 231115 SOAR sub-total files
22 3134 9909 73518 Sun interface files (in C)
68 1136 40848 304633 grand totals

7. Conclusions
A bytecode virtual machine is very effective for defining precisely the semantics

of a language, and bytecode interpretation is an exceptionally fast way of obtaining a
slow imnlementation of that language. The SOAR project has confirmed that compil--
ing directly to native code on a RISC architecture is a viable implementation route
for a fast implementation. Our experience has also confirmed that it is possible to
compile to the native code of more traditional von Neumann architectures and
achieve reasonable performance [Deutsch84].

We have also confirmed that memory can be traded for performance. Smalltalk
on 400ns SOAR will run as fast as the fastest known implementation, the Xerox
Dorado.
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